

NLP Commands - List 4
NLP Commands Detailed 7

Window/Tab/Alert 7
Navigate to a URL	 7

Switch to another tab/window	 7

Switch to alert/prompt	 8

Set screen/window size - [width * height]	 8

Click - Select - Choose 9
Click on text	 9

Click on radio/checkbox	 9

Click on Attribute value	 9

Click based on Container	 9

Click on repeated elements	 10

Select/Choose	 10

Enter 11
Hover 11
Validations 11
Verify text is on the page	 11

Verify if an element is disabled/enabled/ (not) visible	 11

Verify URL	 12

Verify New Windows or Alerts	 12

Verify image of something is on page	 12

Verify text using xpath	 12

Verify if xpath matches with given xpath	 12

Verify attribute of an xpath	 13

Verify if a saved variable matches with some text	 13

Verify CSS properties with xpath	 13

Verify if a saved variable text is present on the page	 14

Verify text between 2 variables	 14

Conditional Instructions 15
Looping Statements 15
Modular approach - Flows 16

� �1

Waits 17
Wait for given time	 17

Wait until a condition is met	 17

Upload 17
Date Support 18
Get Todays date in a given format	 18

Relative Date support	 18

Using Variables 19
Creating variable	 19

Referencing previously created variable	 19

Saving a variable from label on page or xpath	 19

Other Misc 19
Use custom code from file	 19

Actions with Proximity [Next to/before/after]	 20

Script Execution 20
Saving with Execution 21
JavaScript 21
Set value for a Text box	 21

Verify if a checkbox is checked	 21

Verify if a checkbox is checked if in iframe	 21

Verify number of elements	 21

Get a values attribute	 21

Find sum of numbers in a string	 22

Luhn Algorithm or Modulus 10 Algortithm	 22

Dropdown Validation	 22

Shell 23
Find the difference between 2 dates	 23

Get System Time	 23

Table Instructions 24
Clicks	 24

Enter text	 24

Radio Button Selection	 24

Checkbox Selection	 25

DropDown Selection	 25

Click/ Enter text based on row number	 25

Get the table row count	 25

� �2

Excel Functions 25
Summing up numbers	 25

Multiplication	 26

Division	 26

Round	 26

Greater than	 26

Dates	 26

Days between Dates	 26

Currency Symbols as Prefix	 26

Other Misc	 26

� �3

NLP Commands - List
1. _var{[excel formula]} as [var_name]

2. _xl{[excel formula]} as [var_name]

3. [Action] and save it as [var_name]

4. Assert [text] is visible on the page

5. Assert image of "text", "text" is on the page

6. Begin block [block_name]

7. Begin script _bash with ${input_var}

8. Begin script _js with ${input_var}

9. Begin script _py with ${input_var}

10. Choose _css("[selector]")

11. Choose [text]

12. Choose {xpath: "[address]"}

13. Click _css("[selector]")

14. Click {xpath: "[address]"}

15. Click on radio next to [text]

16. Click on [exact attribute value]

17. Create random variable [var_name]

18. End block

19. End script save as ${output_var_name}

20. Enter text in _css("[selector]")

21. Enter text in [text]

22. Enter text in {xpath: "[address]"}

23. Exec _js{[script]} with ${input_var} returning ${output_var}

24. Exec _py{[script]} with ${input_var} returning ${output_var}

25. Exec _sh{[script]} with ${input_var} returning ${output_var}

26. Exec "[artifact file]" with ${input_var} returning ${output_var}

27. Fill in text in _css("[selector]")

28. Fill in text in [text]

29. Fill in text in {xpath: "[address]"}

30. Go to website

31. Hover on _css("[selector]")

32. Hover on [text]

33. Hover on {xpath: "[address]"}

34. Hover over _css("[selector]")

35. Hover over [text]

36. Hover over {xpath: "[address]"}

37. Launch website

38. Market:

39. Navigate website

40. Open website

41. Press _css("[selector]")

42. Press {xpath: "[address]"}

43. Press on radio next to [text]

44. Run ${flow name} for [number] times

45. Run ${flow name} for all rows

� �4

46. Save _css("[selector]") as [var_name]

47. Save {xpath: "[address]"} as [var_name]

48. Select _css("[selector]")

49. Select [text]

50. Select {xpath: "[address]"}

51. Set screen/window size - [width] * [height]

52. Set text in _css("[selector]")

53. Set text in [text]

54. Set text in {xpath: "[address]"}

55. Switch to 2nd tab

56. Switch to 2nd window

57. Switch to 3rd tab

58. Switch to 3rd window

59. Switch to alert and click on accept

60. Switch to alert and click on cancel

61. Switch to alert and click on leave

62. Switch to alert and click on ok

63. Switch to alert and click on stay

64. Switch to confirm and click on accept

65. Switch to confirm and click on cancel

66. Switch to confirm and click on leave

67. Switch to confirm and click on ok

68. Switch to confirm and click on stay

69. Switch to new tab

70. Switch to new window

71. Switch to original tab

72. Switch to original window

73. Switch to prompt and click on accept

74. Switch to prompt and click on cancel

75. Switch to prompt and click on leave

76. Switch to prompt and click on ok

77. Switch to prompt and click on stay

78. Type in text in _css("[selector]")

79. Type in text in [text]

80. Type in text in {xpath: "[address]"}

81. Upload file to _css("[selector]")

82. Upload file to [text]

83. Upload file to {xpath: "[address]"}

84. Use custom code from [location]

85. Verify _css("[selector]") begins with [text] or begins with [text]

86. Verify _css("[selector]") begins with [text] or ends with [text]

87. Verify _css("[selector]") begins with [text]

88. Verify _css("[selector]") contains [text] or begins with [text]

89. Verify _css("[selector]") contains [text] or contains [text]

90. Verify _css("[selector]") contains [text] or ends with [text]

91. Verify _css("[selector]") contains [text]

92. Verify _css("[selector]") ends with [text] or ends with [text]

93. Verify _css("[selector]") ends with [text]

� �5

94. Verify _css("[selector]") is _css("[selector]")

95. Verify _css("[selector]") is _css("[selector]")

96. Verify _css("[selector]") is disabled

97. Verify _css("[selector]") is enabled

98. Verify _css("[selector]") is not visible

99. Verify _css("[selector]") is visible

100.Verify [text] is on the page

101.Verify {xpath: "[address]"} begins with [text] or begins with [text]

102.Verify {xpath: "[address]"} begins with [text] or ends with [text]

103.Verify {xpath: "[address]"} begins with [text]

104.Verify {xpath: "[address]"} contains [text] or begins with [text]

105.Verify {xpath: "[address]"} contains [text] or contains [text]

106.Verify {xpath: "[address]"} contains [text] or ends with [text]

107.Verify {xpath: "[address]"} contains [text]

108.Verify {xpath: "[address]"} ends with [text] or ends with [text]

109.Verify {xpath: "[address]"} ends with [text]

110.Verify {xpath: "[address]"} is {xpath: "[address]"}

111.Verify {xpath: "[address]"} is {xpath: “[address]"}

112.Verify {xpath:”[address]”} background-color is #ffffff

113.Verify {xpath:”[address]”} color is #e01719

114.Verify {xpath:”[address]”} font-size 26px

115.Verify {xpath: "[address]"} is disabled

116.Verify {xpath: "[address]"} is enabled

117.Verify {xpath: "[address]"} is not visible

118.Verify {xpath: "[address]"} is visible

119.Verify alert is exists

120.Verify pop up is exists

121.Verify tab is exists

122.Verify the current url is [url]

123.Verify url is [url]

124.Verify variable ${var_name} is [text]

125.Verify window is exists

126.Wait [number] secs

127.Wait for [number] seconds

128.Wait for [number] secs

129.Wait until _css("[selector]") is exists

130.Wait until _css("[selector]") is visible

131.Wait until [text] is exists

132.Wait until [text] is visible

133.Wait until {xpath: "[address]"} is exists

134.Wait until {xpath: "[address]"} is visible

� �6

NLP Commands Detailed
Note: Whenever any action performed on a text doesn’t work without quotes. Try
once more with quotes.

Window/Tab/Alert

Navigate to a URL

Navigates to the url. This should always be the first step in any testcase, since
each testcase in independent in Autonomiq. In addition you can also perform this
during the course of a test step when you want to navigate to another page.

Open/Launch/Go to/navigate website [url]

The url can be given from the data tab.

Switch to another tab/window

This command will move focus on to other pop-up windows if new window/tab
comes-up

Switch to first/second/1/1st/2/2nd/3/3rd/original/new tab/window

For a new window or tab

• "switch to new window”

• "switch to new tab”

This will get the focus back to the original window if a new window comes down

"switch to original window”

This will move focus to required tab/window if multiple window comes-up

"switch to 3rd tab”

� �7

Switch to alert/prompt

An alert/prompt is different from a normal window. Usual switch to window/tab will
not work in this case. Use the below options as required.

Switch to alert/prompt/confirm and click on ok/accept/leave/cancel/stay

Based on what is displayed in your prompt you can choose one of the following commands

• “Switch to alert and click on accept”
• “Switch to alert and click on cancel”
• “Switch to alert and click on leave”
• “Switch to alert and click on ok”
• “Switch to alert and click on stay”
• “Switch to confirm and click on accept”
• “Switch to confirm and click on cancel”
• “Switch to confirm and click on leave”
• “Switch to confirm and click on ok”
• “Switch to confirm and click on stay”

Whenever an alert window is encountered, a variable will be created win variables
as ‘alert_message’. This variable can then be used to verify for specific message if
needed.

Set screen/window size - [width * height]

If in case your window size is not coming up as required during automation, you
can give the setting at the starting of the testcase after open window.

• "set screen size - 500 * 500"
• "set screen size 500*500"
• "set window size - 500 * 500"
• "set window size 500 * 500”

� �8

Click - Select - Choose

Click on text
Click/Press on/at [element text]

• "click on user name"
• "click at user name”
• "press on password"
• "press at password”

Click on radio/checkbox

Click/Press on/at [radio/checkbox] next to [element text]

When you want to click a radio button or checkbox next to something. The
following can be used.

• "click on the radio next to username"
• "press at the radio next to password”

Click on Attribute value

Click also works on unique attribute values.

Click on [exact attribute value]

For example,

	

• Click on btnk

Note: This is case insensitive

Click based on Container

Click on [identifier1] for [identifier2]

Can be used in the following scenarios:

� �9

1. Where there are multiple repetitions of the same button, but there are unique
identifiers for each which is present in the container surrounding it.

ex: Click on READ MORE for Skate Victoria
2. When there are multiple calendar pages (similar situation as above

ex: Click on 13 for May 2019

Click on repeated elements

If repeated text is there, you can give the click based on proximity. [Actions based
on proximity]

Select/Choose

Select/choose [element text]

In below cases data to be selected should be sent from data tab

• "select username"
• "choose password”

Select/choose [element text from list] in [title of the dropdown]

Here Passed is the value in the dropdown with Status as the title of the dropdown

• "select Passed in Status"

� �10

Enter

Enter/Type in/fill in/set text in [field]

• "enter hanSong in username"
• "type in hanSong in username"
• "fill in hanSong in username”

Hover
Hover over/on [field]

"hover over username" / "hover on username"

Validations
Using Assert will ensure that the testcase fails and halts at the failed step

Using Verify will ensure that the testcase fails but the execution will not halt. It will proceed to the
next step.

Verify text is on the page

This helps to verify if a text is present on the page. This works of part of a phrase
also.

Verify [some text] is on the screen.

• "verify 'login' is on the screen"

Verify if an element is disabled/enabled/ (not) visible

This method can be used to verify if the target element is visible/enabled etc

Verify {xpath: "xpath"} is [disabled/enabled/visible/not visible]

• "verify {xpath: "//img[@class='gb_Wa']"} is disabled"

� �11

Verify URL

The URL of the current window in focus can be verified with this command. This
can be used when user navigates to another URL or when user switches to
another window and is expected to verify the url,

Verify the current URL is [url]

• "verify the current URL is https://www.test.com/“

Verify New Windows or Alerts

This command can be used whenever user wants to check if new window
appears/Pop-up appears. Based on this, a decision can be made if user should
use ‘Switch to’

Verify new window/tab/alert/pop up/pop-up exists

• "verify new window exists"
• "verify new alert exists"

Verify image of something is on page

This command is for verify some image is on the page.

Verify image of "something" is on the page.

• "verify image of 'person', 'man' is on the page”
•
Verify text using xpath

Verify {xpath: "xpath"} [contains/begins with/ends with] [text]

"verify {xpath: "//img[@class='gb_Wa']"} begins with google"

Verify if xpath matches with given xpath

Presently verify command supports elements which can be found with xpath

Verify {xpath: "xpath"} is [xpath]

• "verify {xpath: "//img[@class='gb_Wa']"} is {xpath: "//img[@class='gb_Wa']"}"
• "verify {xpath: "//img[@class='gb_Wa']"} begins with goo or ends with gle”

� �12

Verify attribute of an xpath

This command can be used to verify the attribute of an element using given xpath.

Verify name/placeholder/data-toggle/value/class/type/any-attr of {xpath:
"xpath"} is "some value”

• "verify name of {xpath: "//img[@class='gb_Wa']"} is test”

Verify {attribute:”xpath”} is [some text]

This can be used to check if checkbox is checked, if any attribute changes based
on checkbox change.

Verify if a saved variable matches with some text 

This command can be used to verify the value which was saved in some variable.

Verify variable ${variableName} is “someText"

• "verify variable ${var1} is “test"

Verify CSS properties with xpath

Any CSS attribute of an element can be validated to be expected value using the
xpath of the element.

Verify {xpath: "xpath"} width/height/font-family/text-align/font-size/display/
color/background-color is "some value"

� �13

"verify {xpath: : "//img[@class='gb_Wa']"} color is #e01719

Note: When validating colours, make sure that the value is in lower case

Verify if a saved variable text is present on the page

• "verify ${var1} is on page
• "verify ${var1} is visible

Verify text between 2 variables

Verify variable ${var_1} is ${var_2}

• “Verify variable ${set1} is ${set2}”

Sample failed case:

� �14

Conditional Instructions

These instructions are executed if certain conditions are true. Condition is similar
to as 'verify'. Use this instead of verify if other instrucitons are to be performed
after it.

if {condition}, some instruction to execute if condition is true

• if {current url is “https://..."}, enter userrname
• if {xpath:'xpath_'} is visible, Click on Submit
•

�

Looping Statements
Blocks can be used to loop through commands as many times as required.

begin block <block_name>{instruction1}{instruction2}....end block
 
begin block sample_block open website 
enter username 
enter password 
click on login 
end block

run ${block_name} for (number) times

• run ${sample_block} for 2 times
•
� �15

run ${block_name} for (number/all) rows
• run ${sample_block} for all rows

If User wants to run through multiple data for input in each loop, then use separate
data file with multiple data. After uploading the data file, associate/link it with the
relevant testcase.

In this approach each row of data in the Excel/CSV will correspond to a loop

run ${blockname} until {condition}

The below command is similar to verify

• run ${sampleblock} until pop-up exists

Note: While generating, only the first loop is used. During generation, all the data
will be used and looped through.

Modular approach - Flows
Flows similar to methods or functions where a user can create a block of code which can be
reused across testcases.

run ${flow_name}

Once a flow is created, it can be used in a test step in the following way.
During generation for the first time, the steps will expand to display the steps inside the flow.

Note: Presently support is for adding and cloning a flow, User cannot delete a created flow. User
can clone and edit the steps if needed

� �16

Waits

Wait for given time

Wait for {number} seconds/secs

• "wait for 3 seconds"
• "wait for 5 secs”

Wait until a condition is met

Wait until [element] is visible/exists

• "wait until username is visible"
• "wait until username is exists”

Upload
Upload file should be uploaded to Artifacts section of Autonomiq. The field
mentioned here will be the text in the upload search box.

Upload file to [field]

• " upload file to 'select xls,xlsx or csv file' “

� �17

Date Support

Get Todays date in a given format

This should be provided in the data tab.

{today, <format>}

• "Enter Date" + data tab should have {today, dd/mm/yy}
• "Enter Date" + data tab should have {today, mm/dd/yy}
• "Enter Date" + data tab should have {today, yy/mm/dd}
•
Relative Date support

Support is also provided for additions of days/months/years etc. This should be
provided in data tab in UI. In uploaded file this should be present in the test data
columned

Note: used format is not case-sensitive

Here var_month44 store a month which is 2 months more than the current month

For running a job which should use today's date

• {Today, MM/dd/yyyy}

2 days ago from now

• {Today - 2{dd}, MM/dd/yyyy}undefined>2 days later from now: {Today +

2{dd}, MM/dd/yyyy}

1 month ago from now

• {Today - 1{mm}, MM/dd/yyyy}

� �18

1 month later from now

• {Today + 1{mm}, MM/dd/yyyy}

1 year ago from now

• {Today - 1{yy}, MM/dd/yyyy}

1 year later from now

• {Today + 1{yy}, MM/dd/yyyy}

Using Variables

Creating variable

[action] and save it as [variable_name]

 In this case, Instruction automatically get the value from the data tab and store it into my_name
variable and they do act as is (this case, Enter username)

• "Enter username and save it as my_name”

Referencing previously created variable

${varName}

Note: Please refer to other sections also for other uses of variables.

Saving a variable from label on page or xpath

When saving variable, please note that only the text from that element or xpath will
be saved. If the element/xpath does not point to any text

save {xpath:"xpath_value"} as [variable name]

save [element text] as [variable name]

Other Misc
Use custom code from file

If a file is added to artifacts, then the user can use this code.

"use custom code from" + data tab should contain the name of the file

"Create random variable <var_name>" for a random alphanumeric string

� �19

• used format is case-sensitive, so you should care about the name of a variable to use
"Create random variable myprojectname" * how to use that variable in the following Instruction?
"Enter project name" + data tab should have "${myprojectname}" value

• above represent the format that we can use saved variable ${var_name}
erred to a string * so in this case, they try to find element having given my_name string.

Random number support

In the data tab, "#{AnomTest\d\d\d\d\d\d\d}" is transformed into below AnomTest1657483

(not precisely correct, 'cause It's randomly generated every time)

Actions with Proximity [Next to/before/after]

• "click on edit next (to) Donald"
• "click on radio before <some text>"
• "enter user name after <some text>”

Script Execution
Autonomiq supports execution of Scripts - Python, JavaScript, Shellscript and
Java. Simple actions can be performed using user written scripts.

This includes DOM handling and variable manipulation.

Exec js/py/sh/java{script} with ${input_variable_name} returning $
{output_variable_name}

if var = "testing", var_2 = "printing variable: testing"

• "exec py{print(‘Modified variable: ' +aiq_1)} with ${var1} returning ${var2}"
• "exec js{return 'Modified variable: ' + aiq_1} with ${var1} returning ${var2}"
• "exec sh(echo 'Modified variable: ' + aiq_1) with ${var1} returning ${var2}"

Note:

• Any reference to input variable should be aiq_1 , aiq_2 and so on.

• Input variables can me numerous, they have to be comma seperated

• Output variable support is currently only 1

• Here returning ${} is required with variable name. This is different from saving variable.

• Since the scripts being executed are seperate, any kind of iframe navigation has to be

handled within the script

� �20

Saving with Execution

Save _js {return ${input_variable}} as output_variable

• save _js{return ${var}.replace("/", "/g")} as return_js

JavaScript
Some examples of using JavaScript with Exec is given below

Set value for a Text box

exec _js{document.getElementById(‘someID’).value=23}

Verify if a checkbox is checked

save _js{return document.getElementById("exampleCheck1").checked} as
value

Verify if a checkbox is checked if in iframe

JS: document.getElementsByName(“iframe_name”)
[0].contentWindow.getElementById("exampleCheck1").checked

save _js{return
document.getElementById("iframeResult").contentWindow.document.getElementsB
yName("vehicle1")[0].checked} as value3

Note: If multiple iframe are present, repeat the code till the level you need to be

document.getElementById(“iframeResult1”).contentWindow.
document.getElementById(“iframeResult1”).contentWindow.document.getElementsByNam
e("vehicle1")[0].checked

Verify number of elements

Save _js{return document.getElementsByClassName("tfa-recent").length} as
varName

Get a values attribute

� �21

Save _js{return document.getElementsByClassName("tfa-recent").title} as varName

Find sum of numbers in a string

If num is “1|2|3” then sum will return 6

Exec _js{var sum=0;aiq_1.split("|").forEach(function(val)
{sum=sum+parseInt(val)});return(sum);} with ${num} returning ${sum}

Luhn Algorithm or Modulus 10 Algortithm

This will return true | false based on valid number given as input from variables.

Exec _js{var len = aiq_1.length;var sum = 0;for (var i = len-1; i >= 0; i--) {var d =
parseInt(aiq_1.charAt(i));if (i % 2 == (len)%2) { d *= 2; };if (d > 9) { d -= 9; };sum +=
d;};if(sum%10==0){return(true);}else{return(false);} }with ${num} returning ${status}

With further condition check on YYYYMM

Exec _js{var len = aiq_1.length; var init = aiq_1.substring(0,6);var sum = 0;var regex =
new RegExp("^\\d{4}(0[1-9]|1[0-2])$");for (var i = len-1; i >= 0; i--) {var d =
parseInt(aiq_1.charAt(i));if (i % 2 == (len)%2) { d *= 2; };if (d > 9) { d -= 9; };sum +=
d;};if(sum%10==0){if(regex.test(init)){console.log(true);}else{console.log(false);};}
else{console.log(false);} }with ${num3} returning ${status_fin}

Dropdown Validation

This will verify specific text is in dropdown or not.

1. Validate one value

	 Save {xpath: "//select[@id='year']"} as dropdown_values

save the text in the dropdown to a variable

_var{"1991"} as dropdown_validation

save the text that you want to make sure it exists or does not exists in dropdown to
	 a variable.

	 Exec _js{return aiq_1.split("\n").includes(aiq_2)} with $
{dropdown_values},${dropdown_validation} returning ${dropdown_result}

run javascript to check ‘dropdown_validation’ is in ‘dropdown_values’

	 Verify variable ${dropdown_result} is “True"

� �22

verify if dropdown_result is true or not.

2. Validate multiple values

	 Save {xpath: "//select[@id='year']"} as dropdown_values

_var{"2017|2018|2019"} as dropdown_validation

	 between multiple text, you should put “|”.

Exec _js{return aiq_2.split("|").filter(x => !
aiq_1.split("\n").includes(x)).length == 0; } with ${dropdown_values},$
{dropdown_validation} returning ${dropdown_result}

Verify variable ${dropdown_result} is “True"

3. Return number of text that exists in dropdown

	 Save {xpath: "//select[@id='year']"} as dropdown_values

_var{"2018|2020|2021"} as dropdown_validation

Exec _js{return aiq_2.split("|").filter(x =>
aiq_1.split("\n").includes(x)).length; } with ${dropdown_values},$
{dropdown_validation} returning ${dropdown_result}

Verify variable ${dropdown_result} is "2"

Shell

Find the difference between 2 dates

Here input variables are d1 and d2 and the difference in days is returned in diff

exec _bash{echo $((($(date -d "${aiq_1}" '+%s') - $(date -d "${aiq_2}" '+%s'))/
86400))} with ${d1}, ${d2} returning ${diff}

Get System Time

• “Exec _bash{echo $(date +"%k")} returning ${hr}”
• “Exec _bash{echo $(date +"%M")} returning ${min}”

Other options:-

%k - hrs in 24 hr format

� �23

%l - hrs in 12hr format

%M - mins

%S - Seconds

(Ref: https://www.cyberciti.biz/faq/linux-unix-formatting-dates-for-display/)

Table Instructions
This will work for HTML tables with simple table-tr-td tags, not nested. This
command identifies the cell below First Column for which Second Columns value
matches.

Action on "FirstColumnName" Where SecondColumnName [operator]
SecondColumnValue

Clicks

Examples with different operators given below:

• "Click on "Move" Where Winning % is 55.71"
• "Click on "Black" Where Black Elo is not undefined"
• "Click on "White" Where White Elo greater than 2700"
• "Click on "Move" Where Winning % lesser than 55"
• "Click on "White" Where White Elo begins with I"
• "Click on "Wins" Where Move starts with g"
• "Click on "Black" Where Date ends with ?"
• "Click on "White" Where Date contains 1994"
• "Click on "White" Where White Elo != undefined"
• "Click on "Move" where Winning % > 55"
• "Click on "Move" Where Winning % < 55"
• "Click on "Move" Where Winning % <= 55"
• "Click on "Move" Where Wins >= 70060"
• "Click on "Move" Where Wins = 70060”
•
Enter text

Review is the column name here.

• "Enter text in "Review" Where Location is Mysore"

Radio Button Selection

"Click on radio in "No" Where Location is Mysore"

• No is the column name here.

•

� �24

https://www.cyberciti.biz/faq/linux-unix-formatting-dates-for-display/

Checkbox Selection

"Click on checkbox in "Choose" Where Name is Anki"

• Choose is the column name here.

DropDown Selection

Books is the column name here, the value to choose is given in testdata

• "Choose "Books" Where Name is SKM”

The Shinning is the value in the dropdown. The column in which this comes up
need not be specified.

• "Choose "The Shinning" Where Name is Anki"

Click/ Enter text based on row number

Other similar commands are listed below

• "Click on "Move" Where row is 3"
• "Click on "Move" Where row is last”

Get the table row count

This will return the count of the number of rows in the table.

• "Get table row count as variable_Name"

Excel Functions

 _(xl|var){"excel formula"} as [variable_name]

Summing up numbers

• _xl{${var1}+${var1}} as sum1
• _xl{SUM(${var1},${var1})} as sum2
•

Difference

� �25

• _xl{${sum}-${var3}}

Multiplication

• _xl{17*3} as var_float

Division

• _xl{17/3} as var_float

Round
• _xl{ROUND(${var_float}, 1)} as var_float_round

Greater than

• _xl{${table_count} < 20} as condition

Dates

• _xl{TEXT(TODAY(), ""mm/dd/yyyy"")} as var_date
• _xl{TEXT(TODAY(), ""mmm-ddd"")} as var_date2
• _xl{TEXT(TODAY(), ""mmmm dddd"")} as var_date3
.
Days between Dates

• _xl{DAYS(${date1}.${date2})} as date_diff

Currency Symbols as Prefix

The corresponding Currency symbol - in this case $ - can be concatenated in the
beginning of the function

Other Misc

� �26

excel with numbers,

"_xl{""$"" & SUM(""$18"", ""$12"")} as var_sum",

"_xl{CEILING(${var_float}, 1)} as var_float_ceil",

_xl{FLOOR(${var_float})} as var_float_floor,

"_xl{MAXA(""1"", ""2"", ""3"", ""4"", ""5"")} as var_max",

"_xl{SMALL([""1"", ""2"", ""3"", ""4"", ""5""], 3)} as var_small",

excel with string,

"_xl{TRIM("" string with space "")} as var_str_trim",

"_xl{SUBSTITUTE(""test test"", ""test"", ""testing"")} as var_str_sub",

"_xl{SPLIT(""111-222-333"", ""-"")} as var_str_split",

"_xl{REGEXMATCH(""https://test.com?params=testing"", ""https://test.com?"")}
as var_str_regex_match",

"_xl{REGEXREPLACE(""test1 test2 test test"", ""test[0-9]"",
""test_with_number"")} as var_str_regex_replace",

� �27

	NLP Commands - List
	NLP Commands Detailed
	Window/Tab/Alert
	Navigate to a URL
	Switch to another tab/window
	Switch to alert/prompt
	Set screen/window size - [width * height]
	Click - Select - Choose
	Click on text
	Click on radio/checkbox
	Click on Attribute value
	Click based on Container
	Click on repeated elements
	Select/Choose
	Enter
	Hover
	Validations
	Verify text is on the page
	Verify if an element is disabled/enabled/ (not) visible
	Verify URL
	Verify New Windows or Alerts
	Verify image of something is on page
	Verify text using xpath
	Verify if xpath matches with given xpath
	Verify attribute of an xpath
	Verify if a saved variable matches with some text
	Verify CSS properties with xpath
	Verify if a saved variable text is present on the page
	Verify text between 2 variables
	Conditional Instructions
	Looping Statements
	Modular approach - Flows
	Waits
	Wait for given time
	Wait until a condition is met
	Upload
	Date Support
	Get Todays date in a given format
	Relative Date support
	Using Variables
	Creating variable
	Referencing previously created variable
	Saving a variable from label on page or xpath
	Other Misc
	Use custom code from file
	Actions with Proximity [Next to/before/after]
	Script Execution
	Saving with Execution
	JavaScript
	Set value for a Text box
	Verify if a checkbox is checked
	Verify if a checkbox is checked if in iframe
	Verify number of elements
	Get a values attribute
	Find sum of numbers in a string
	Luhn Algorithm or Modulus 10 Algortithm
	Dropdown Validation
	Shell
	Find the difference between 2 dates
	Get System Time
	Table Instructions
	Clicks
	Enter text
	Radio Button Selection
	Checkbox Selection
	DropDown Selection
	Click/ Enter text based on row number
	Get the table row count
	Excel Functions
	Summing up numbers
	Multiplication
	Division
	Round
	Greater than
	Dates
	Days between Dates
	Currency Symbols as Prefix
	Other Misc

